Напряжение определяемое в теории упругости. Основы теории упругости. Прямая и обратная задачи теории упругости

В главах 4-6 были выведены основные уравнения теории упругости, устанавливающие законы изменения напряжений и деформаций в окрестности произвольной точки тела, а также соотношения, связывающие напряжения с деформациями и деформации с перемещениями. Приведем полную систему уравнений теории упругости в декартовых координатах.

Уравнения равновесия Навье:

Соотношения Коши:


Закон Гука (в прямой и обратной формах):


Напомним, что здесь е = е х + е у + e z - относительная объемная деформация, а по закону парности касательных напряжений Xj. = Tj; и соответственно у~ = ^ 7 . Входящие в (16.3, а) постоянные Ляме определяются по формулам (6.13).

Из приведенной системы видно, что она включает 15 дифференциальных и алгебраических уравнений, содержащих 15 неизвестных функций (6 компонент тензора напряжений, 6 компонент тензора деформаций и 3 компоненты вектора перемещения).

В силу сложности полной системы уравнений нельзя найти общее решение, которое было бы справедливо для всех задач теории упругости, встречающихся на практике.

Существуют различные способы уменьшения количества уравнений, если в качестве неизвестных функций принять, например, только напряжения или перемещения.

Если, решая задачу теории упругости, исключить из рассмотрения перемещения, то вместо соотношений Коши (16.2) можно получить уравнения, связывающие между собой компоненты тензора деформаций. Продифференцируем деформацию г х, определяемую первым равенством (16.2), два раза по у, деформацию г у - два раза по х и сложим полученные выражения. В результате получим

Выражение, стоящее в скобках, согласно (16.2) определяет угловую деформацию у. Таким образом, последнее равенство можно записать в виде

Аналогично можно получить еще два равенства, которые вместе с последним соотношением составляют первую группу уравнений совместности деформаций Сен-Венана:

Каждое из равенств (16.4) устанавливает связь между деформациями в одной плоскости. Из соотношений Коши могут быть также получены условия совместности, связывающие деформации в разных плоскостях. Продифференцируем выражения (16.2) для угловых деформаций следующим образом: у - по z у - по х;

По у; сложим два первых равенства и вычтем третье. В результате получим


Дифференцируя это равенство по у и учитывая, что,

приходим к следующему соотношению:

С помощью круговой подстановки получим еще два равенства, которые вместе с последним соотношением составляют вторую группу уравнений совместности деформаций Сен-Венана:

Уравнения совместности деформаций называются также условиями сплошности или неразрывности. Эти термины характеризуют тот факт, что при деформировании тело остается сплошным. Если представить тело состоящим из отдельных элементов и принять деформации е х, у в виде произвольных функций, то в деформированном состоянии из этих элементов не удастся сложить сплошное тело. При выполнении условий (16.4), (16.5) перемещения границ отдельных элементов будут таковы, что тело и в деформированном состоянии останется сплошным.

Таким образом, одним из способов сокращения количества неизвестных при решении задач теории упругости является исключение из рассмотрения перемещений. Тогда вместо соотношений Коши в полную систему уравнений будут входить уравнения совместности деформаций Сен-Венана.

Рассматривая полную систему уравнений теории упругости, следует обратить внимание на то, что она практически не содержит факторов, определяющих напряженно-деформированное состояние тела. К таким факторам относятся форма и размеры тела, способы его закрепления, действующие на тело нагрузки, за исключением объемных сил X, Y, Z.

Таким образом, полная система уравнений теории упругости устанавливает лишь общие закономерности изменения напряжений, деформаций и перемещений в упругих телах. Решение же конкретной задачи может быть получено, если заданы условия нагружения тела. Это дается в граничных условиях, которые и отличают одну задачу теории упругости от другой.

С математической точки зрения также понятно, что общее решение системы дифференциальных уравнений включает в себя произвольные функции и постоянные, которые и должны быть определены из граничных условий.

- – раздел механики, изучающий вызванные физическими воздействиями упругие деформации и напряжения в твердом теле. [Терминологический словарь по строительству на 12 языках] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

теория упругости - Наука о закономерностях изменения напряжённого и деформированного состояний нагруженного твёрдого тела в пределах упругой работы материала [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN elasticity theory DE… … Справочник технического переводчика

теория упругости - tamprumo teorija statusas T sritis fizika atitikmenys: angl. elasticity theory vok. Elastizitätstheorie, f rus. теория упругости, f pranc. théorie d’élasticité, f … Fizikos terminų žodynas

ТЕОРИЯ УПРУГОСТИ - наука о закономерностях изменения напряжённого и деформированного состояний нагруженного твёрдого тела в пределах упругой работы материала (Болгарский язык; Български) теория на еластичността (Чешский язык; Čeština) teorie pružnosti (Немецкий… … Строительный словарь

Теория упругости и пластичности - состоит из двух подразделов: Теории упругости, Теории пластичности. Список значений слова или словосочетан … Википедия

УПРУГОСТИ ТЕОРИЯ - раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия

УПРУГОСТИ МАТЕМАТИЧЕСКАЯ ТЕОРИЯ - раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. Напряжение в любой точке тела характеризуется 6 величинами компонентами напряжений: нормальными … Математическая энциклопедия

Упругости теория - Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Упругости теория - раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… … Большая советская энциклопедия

Теория пластичности - Теория пластичности раздел механики сплошных сред, задачами которого является определение напряжений и перемещений в деформируемом теле за пределами упругости. Строго говоря, в теории пластичности предполагается, что напряженное состояние… … Википедия

Книги

  • Теория упругости , М. Филоненко-Бородич , Предлагаемый вниманию читателей краткий курс теории упругости составлен на основе лекций, прочитанных автором в Московском государственном университете им. М. В. Ломоносова. Эти лекции имеют… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа , Купить за 2200 грн (только Украина)
  • Теория упругости , М. Филоненко-Бородич , Предлагаемый вниманию читателей «краткий курс теории упругости» составлен на основе лекций, прочитанных автором в Московском государственном университете им. М. В. Ломоносова. Эти лекции… Категория: Математика и естественные науки Серия: Издатель:

Основная задача теории упругости - определение напряженно-деформированного состояния по заданным условиям нагружения и закрепления тела.

Напряженно-деформированное состояние определено, если найдены компоненты тензора напряжений {} и вектора перемещений, девять функций.

Основные уравнения теории упругости

Для того, чтобы найти эти девять функций надо записать основные уравнения теории упругости, или:

Дифференциальные Коши

где - компоненты тензора линейной части деформаций Коши;

Компоненты тензора производной перемещения по радиусу.

Дифференциальные уравнения равновесия

где - компоненты тензора напряжений; - проекция объемной силы на ось j.

Закон Гука для линейно-упругого изотропного тела

где - константы Ламе; для изотропного тела. Здесь - нормальные и касательные напряжения; деформации и углы сдвига соответственно.

Вышеперечисленные уравнения должны удовлетворять зависимостям Сен-Венана

В теории упругости задача решена, если выполняются все основные уравнения.

Типы задач теории упругости

Граничные условия на поверхности тела должны выполняться и в зависимости от типа граничных условий различают три типа задач теории упругости.

Первый тип. На поверхности тела заданы силы. Граничные условия

Второй тип. Задачи, в которых на поверхности тела задано перемещение. Граничные условия

Третий тип. Смешанные задачи теории упругости. На части поверхности тела заданы силы, на части поверхности тела задано перемещение. Граничные условия

Прямая и обратная задачи теории упругости

Задачи, в которых на поверхности тела заданы силы или перемещения, а требуется найти напряженно-деформированное состояние внутри тела и то, что не задано на поверхности, называют прямыми задачами. Если же внутри тела заданы напряжения, деформации, перемещения и т.д., а требуется определить то, что не задано внутри тела, а также перемещения и напряжения на поверхности тела (то есть найти причины, вызвавшие такое напряженно-деформированное состояние)), то такие задачи называются обратными.

Уравнения теории упругости в перемещениях (уравнения Ламе)

Для определения уравнений теории упругости в перемещениях запишем: дифференциальные уравнения равновесия (18) закон Гука для линейно-упругого изотропного тела (19)

Если учесть, что деформации выражаются через перемещения (17), запишем:

Следует также напомнить, что угол сдвига связан с перемещениями следующим соотношением (17):

Подставив в первое уравнение равенств (19) выражение (22), получим, что нормальные напряжения

Отметим, что запись иц в данном случае не подразумевает суммирования по i.

Подставив во второе уравнение равенств (19) выражение (23), получим, что касательные напряжения

Запишем уравнения равновесия (18) в развернутом виде для j = 1

Подставив в уравнение (26) выражения для нормальных (24) и касательных (25) напряжений, получим

где л- константа Ламе, которая определяется по выражению:

Подставим выражение (28) в уравнение (27) и запишем,

где определяется по выражению (22), или в развернутом виде

Разделим выражение (29) на G и приведем подобные слагаемые и получим первое уравнение Ламе:

где - оператор Лапласа (гармонический оператор), который определятся как

Аналогично можно получить:

Уравнения (30) и (32) можно записать в следующем виде:

Уравнения (33) или (30) и (32) являются уравнениями Ламе. Если объемные силы равны нулю или постоянны, то

причем запись в данном случае не подразумевает суммирования по i. Здесь

или, с учетом (31)

Подставив (22) в (34) и проведя преобразования, получим

а, следовательно

где - функция, удовлетворяющая данному равенству. Если

следовательно, f - функция гармоническая. Значит и объемная деформация также функция гармоническая.

Считая верным предыдущее предположение, возьмем гармонический оператор от i -ой строчки уравнения Ламе

Если объемные силы равны нулю или постоянны, то компоненты перемещения есть бигармонические функции.

Известны различные формы представления бигармонических функций через гармонические (удовлетворяющие уравнениям Ламе).

где k = 1,2,3. Причем

Можно показать, что такое представление перемещений через гармоническую функцию обращает в тождество уравнения Ламе (33). Часто их называют условиями Попковича-Гродского. Четыре гармонические функции не обязательны, ведь ф0 можно приравнять нулю.

ТЕОРИЯ УПРУГОСТИ – раздел механики сплошных сред, изучающий перемещения, деформации и напряжения покоящихся или движущихся тел под действием нагрузок. Цель этой теории – вывод математических уравнений, решение которых позволяет ответить на следующие вопросы: каковы будут деформации данного конкретного тела, если к нему приложить в известных местах нагрузки заданной величины? Каковы будут при этом напряжения в теле? Вопрос в том, разрушится ли тело или выдержит эти нагрузки, тесно связан с теорией упругости, но, строго говоря, не входит в компетенцию этой теории.

Количество возможных примеров безгранично – от определения деформаций и напряжений в балке, лежащей на опорах и нагруженной силами, до расчета тех же величин в конструкции самолета, корабля, подводной лодки, в колесе вагона, в броне при ударе снаряда, в горном массиве при прохождении штольни, в каркасе высотного здания и т.д. Здесь нужно сделать оговорку: конструкции, состоящие из тонкостенных элементов, рассчитывают по упрощенным теориям, логически основанным на теории упругости; к таким теориям относятся: теория сопротивления материалов действию нагрузок (знаменитый «сопромат»), задачей которой, в основном, является расчет стержней и балок; строительная механика – расчет стержневых систем (например, мостов); и, наконец, теория оболочек – по существу, самостоятельная и очень сильно развитая область науки о деформациях и напряжениях, предмет исследования которой – важнейшие элементы конструкций – тонкостенные оболочки – цилиндрические, конические, сфероидальные, и имеющие более сложные формы. Поэтому в теории упругости обычно рассматриваются тела, у которых существенные размеры отличаются не слишком сильно. Таким образом, рассматривается упругое тело заданной формы, на которое действуют известные силы.

Основными понятиями теории упругости являются напряжения, действующие на малых площадках, которые можно мысленно провести в теле через заданную точку M , деформации малой окрестности точки M и перемещения самой точки M . Точнее говоря, вводятся тензоры напряжений s ij , тензор малых деформаций e ij и вектор перемещения u i .

Краткое обозначение s ij , где индексы i , j принимают значения 1, 2, 3 следует понимать как матрицу вида:

Аналогично следует понимать и краткое обозначение тензора e ij .

Если физическая точка тела M вследствие деформации заняла новое положение в пространстве , то вектор перемещения есть вектор с компонентами (u x u y u z ), или, сокращенно, u i . В теории малых деформаций компоненты u i и e i считаются малыми величинами (строго говоря, бесконечно малыми). Компоненты тензора e ij и вектора u ij связаны формулами Коши, которые имеют вид:

Видно, что e xy = e yx , и, вообще говоря, e ij = e ji , поэтому тензор деформаций является симметричным по определению.

Если упругое тело под действием внешних сил находится в равновесии (т.е. скорости всех его точек равны нулю), то в равновесии находится и любая часть тела, которую можно мысленно из него выделить. Из тела выделяется маленький (строго говоря, бесконечно малый) прямоугольный параллелепипед, грани которого параллельны координатным плоскостям декартовой системы Oxyz (рис. 1).

Пусть ребра параллелепипеда имеют длины dx , dy , dz соответственно (здесь, как обычно dx есть дифференциал x , и т.д.). Согласно теории напряжений, на гранях параллелепипеда действуют компоненты тензора напряжений, которые обозначаются:

на грани OADG : s xx , s xy , s xz

на грани OABC : s yx , s yy , s yz

на грани DABE : s zx , s zy , s zz

при этом компоненты с одинаковыми индексами (например s xx ) действуют перпендикулярно грани, а с разными индексами – в плоскости площадки.

На противоположных гранях значения одноименных компонент тензора напряжений немного отличаются, это связано с тем, что они являются функциями координат и изменяются от точки к точке (всегда, кроме известных простейших случаев), а малость изменения связана с малыми размерами параллелепипеда, поэтому можно считать, что если на грани OABC действует напряжение s yy , то на грани GDEF действует напряжение s yy +ds yy , причем малая величина ds yy именно в силу своей малости может быть определена с помощью разложения в ряд Тейлора:

(здесь используются частные производные, т.к. компоненты тензора напряжений зависят от x , y , z ).

Аналогично можно выразить напряжения на всех гранях через s ij и ds ij . Далее, чтобы перейти от напряжений к силам, нужно умножить величину напряжения на площадь той площадки, на которой оно действует (например, s yy + ds yy умножить на dx dz ). Когда все силы, действующие на параллелепипед, определены, можно, как это делают в статике, записать уравнение равновесия тела, при этом во всех уравнениях для главного вектора останутся только члены с производными, так как сами напряжения взаимно уничтожаются, а множители dx dy dz сокращаются и в результате

Аналогично получаются уравнения равновесия, выражающие равенство нулю главного момента всех сил, действующих на параллелепипед, которые приводятся к виду:

Эти равенства означают, что тензор напряжений есть симметричный тензор. Таким образом, для 6 неизвестных компонент s ij есть три уравнения равновесия, т.е. уравнений статики недостаточно для решения задачи. Выход из положения состоит в том, чтобы выразить напряжения s ij через деформации e ij с помощью уравнений закона Гука , а затем деформации e ij выразить через перемещения u i с помощью формул Коши, и результат подставить в уравнения равновесия. При этом получается три дифференциальных уравнения равновесия относительно трех неизвестных функций u x u y u z , т.е. число неизвестных равно числу уравнений. Эти уравнения называются уравнениями Ламе

не учитываются массовые силы (вес и др.)

D – оператор Лапласа , то есть

Теперь нужно задать на поверхности тела граничные условия;

основные виды этих условий следующие:

1. На известной части поверхности тела S 1 заданы перемещения, т.е. вектор перемещений равен известному вектору с компонентами { f x ; f y ; f z }:

u x = f (xyz )

u y = f (xyz)

u z = f (xyz )

(f x , f y , f z – известные функции координат)

2. На остальной части поверхности S 2 заданы поверхностные силы. Это означает, что распределение напряжений внутри тела таково, что величины напряжений в непосредственной близости от поверхности, а в пределе – на поверхности на каждой элементарной площадке создают вектор напряжений, равный известному вектору внешней нагрузки с компонентами { F x ;F y ; F z } поверхностных сил. Математически это записывается так: если в точке A поверхности вектор единичной нормали к этой поверхности имеет компоненты n x , n y , n z то в этой точке должны быть выполнены равенства относительно (неизвестных) компонент s ij : e ij , то для трех неизвестных получим шесть уравнений, то есть переопределенную систему. Эта система будет иметь решение только при выполнении дополнительных условий относительно e ij . Эти условия и есть уравнения совместности.

Эти уравнения часто называют условиями сплошности, подразумевая при этом, что они обеспечивают сплошность тела после деформации. Это выражение образное, но неточное: эти условия обеспечивают существование непрерывного поля перемещений, если в качестве неизвестных принять компоненты деформаций (или напряжений). Невыполнение этих условий ведет не к нарушению сплошности, а к отсутствию решения задачи.

Таким образом, теория упругости дает дифференциальные уравнения и граничные условия, которые позволяют сформулировать краевые задачи, решение которых дает полную информацию о распределении в рассматриваемых телах напряжений, деформаций и перемещений. Методы решения таких задач весьма сложны и наилучшие результаты дает сочетание аналитических методов с численными, использующими мощные компьютеры.

Владимир Кузнецов

4. СТРОЕНИЕ ЗЕМЛИ ПО ДАННЫМ СЕЙСМОЛОГИИ

Основы теории упругости: тензор деформации, тензор напряжений, закон Гука, упругие модули, однородные деформации, упругие волны в изотропной среде, законы Ферма, Гюйгенса, Снеллиуса. Сейсмические волны. Развитие сейсмометрических наблюдений: сейсмические станции и их сети, годографы, траектории волн внутри Земли. Определение скорости распространения сейсмических волн с помощью уравнения Гертлоца-Вихерта. Скорости продольных и поперечных волн как функции радиуса Земли. Состояние вещества Земли по данным сейсмологии. Земная кора. Литосфера и астеносфера. Сейсмология и глобальная тектоника.

Основы теории упругости [Ландау, Лифшиц, 2003, с. 9-25, 130-144]

Тензор деформации

Механика твердых тел, рассматриваемых как сплошные среды, составляет содержание теории упругости . Основные уравнения теории упругости были установлены О.Л. Коши и С.Д. Пуассоном в 20-х годах 19 века (подробнее см. главу 15).

Под влиянием приложенных сил твердые тела в той или иной степени деформируются, т.е. изменяют свою форму и объем. Для математического описания деформации тела поступают следующим образом. Положение каждой точки тела определяется ее радиус-вектором r (с компонентами х 1 = х , х 2 = у , х 3 = z ) в некоторой системе координат. При деформировании тела все его точки, вообще говоря, смещаются. Рассмотрим какую-нибудь определенную точку тела; если ее радиус-вектор до деформирования был r , то в деформированном теле он будет иметь некоторое другое

значение r / (с компонентами x i / ). Смещение точки тела при деформировании изобразится тогда вектором r / - r , который обозначим буквой u :

u = x/ − x .

Вектор u называют вектором деформации (или вектором смещения ). Знание вектора u

как функции от x i полностью определяет деформацию тела.

При деформировании тела меняются расстояния между его точками. Если радиусвектор между ними до деформирования был dx i , то в деформированном теле радиус-

вектор между теми же двумя точками будет dx i / = dx i + du i . Само расстояние между точками до деформирования было равно:

dl = dx1 2 + dx2 2 + dx3 2 ,

а после деформирования:

dl / = dx 1 / 2 + dx 2 / 2 + dx 3 / 2 .

Окончательно получаем:

dl / 2 = dl 2 + 2 u

∂u i

∂u k

∂u l

∂u l

∂x k

∂x k

∂x i

∂x i

Этими выражениями определяется изменение элемента длины при деформировании тела. Тензор u ik называется тензором деформации ; по своему определению он симметричен:

u ik = u ki .

Как и всякий симметричный тензор, тензор u ik в каждой точке можно привести к

главным осям и убедиться, что в каждом элементе объема тела деформацию можно рассматривать как совокупность трех независимых деформации по трем перпендикулярным направлениям – главным осям тензора деформации. Практически почти во всех случаях деформирования тел деформации оказываются малыми. Это значит, что изменение любого расстояния в теле оказывается малым по сравнению с самим расстоянием. Другими словами, относительные удлинения малы по сравнению с единицей.

За исключением некоторых особых случаев, которых касаться не будем, если тело подвергается малой деформации, то все компоненты тензора деформации также являются малыми. Поэтому в выражении (4.3) можно пренебречь последним членом как малой величиной второго порядка. Таким образом, в случае малых деформаций тензор деформации определится выражением:

u = 1

∂u i

+ ∂ u k ) .

∂x k

∂x i

Итак, силы являются причиной возникающих в теле движений (перемещений), а деформации – результатом движений [Хайкин, 1963, с. 176].

Основное допущение классической теории упругости

В недеформированном теле расположение молекул соответствует состоянию его теплового равновесия. При этом все его части находятся друг с другом и в механическом равновесии. Это значит, что если выделить внутри тела какой-нибудь объем, то равнодействующая всех сил, действующих на этот объем со стороны других частей, равна нулю.

При деформировании же расположение молекул меняется, и тело выводится из состояния равновесия, в котором оно находилось первоначально. В результате в нем возникнут силы, стремящиеся вернуть тело в состояние равновесия. Эти возникающие при деформировании внутренние силы называются внутренними напряжениями . Если тело не деформировано, то внутренние напряжения в нем отсутствуют.

Внутренние напряжения обуславливаются молекулярными связями, т.е. силами взаимодействия молекул тела друг с другом. Весьма существенным для теории упругости является то обстоятельство, что молекулярные силы обладают очень незначительным радиусом действия. Их влияние распространяется вокруг создающей их частицы лишь на расстоянии порядка межмолекулярных. Но в теории упругости, как в макроскопической теории, рассматриваются только расстояния, большие по сравнению с межмолекулярными. Поэтому «радиус действия» молекулярных сил в теории упругости должен считаться равным нулю. Можно сказать, что силы, обусловливающие внутренние напряжения, являются в теории упругости силами «близкодействующими», передающимися от каждой точки только к ближайшим с нею точкам.

Таким образом, в классической теории упругости силы, действующие на какуюнибудь часть тела со стороны окружающих ее частей, проявляют это действие только непосредственно через поверхность этой части тела.

По сути, такой же идеологии применительно к теории упругости вслед за [Ландау, Лифшиц, 2003] придерживается и автор фундаментального труда [Хайкин, 1963, с. 484].

Тензор напряжений

Вывод о том, что все силы проявляют свое действие только через поверхность, является ключевым для классической теории упругости. Он позволяет для любого объема тела каждую из трех компонент равнодействующей всех внутренних напряжений сил

∫ F i dV (где F i - сила, действующая на единицу объема dV ) преобразовать в интеграл по поверхности этого объема. В таком случае, как следует из векторного анализа, вектор F i должен являться дивергенцией некоторого тензора второго ранга, т.е. иметь вид:

F i = ∂ σ ik . (4.6)

∂x k

Тогда сила, действующая на некоторый объем, сможет быть записана в виде интеграла по замкнутой поверхности, охватывающей этот объем:

∫ Fi dV = ∫ ∂ ∂ σ x ik

= ∫ σ ik df k ,

где вектор d f = df 2

Df 2

направлен

по внешней нормали к поверхности,

охватывающей объем dV .

Тензор σ ik называется тензором напряжений . Как видно из (4.7), σ ik df k есть i -я

компонента силы, действующей на элемент поверхности d f . Выбирая элементы поверхности в плоскостях ху , уz , xz , находим, что компонента σ ik тензора напряжений

есть i -я компонента силы, действующей на единицу поверхности, перпендикулярную к оси x k . Так, на единичную площадку, перпендикулярную к оси х , действуют нормальная к

ней (направленная вдоль оси х ) сила σ xx и тангенциальные (направленные по осям y и z )

силы σ yx и σ zx .

Отметим, что сила, действующая со стороны внутренних напряжений на всю поверхность тела, в отличие от (4.7) есть:

− ∫ σ ik df k .

Записывая момент сил M ik , действующих на некоторый объем тела, в виде:

M ik = ∫ (F i x k − F k x i ) dV

и требуя, чтобы он выражался в виде интеграла только по поверхности, получаем, что тензор напряжения является симметричным:

σ ik = σ ki .

К аналогичному выводу можно прийти и более простым путем [Сивухин, 1974, с. 383]. А именно. Момент dM ik прямо пропорционален моменту инерции элементарного

объема dM ik ≈ I ≈ (dV )5 / 3 и, следовательно, получаем (F i x k − F k x i )dV = dM ik ≈ (dV )5 / 3 ≈ 0 , откуда автоматически следует соотношение (4.8).

Симметрия тензора напряжений позволяет его в каждой точке привести его к главным осям , т.е. в каждой точке тензор напряжений может быть представлен в виде:

σ ik = σ xx + σ yy + σ zz .

В равновесии силы внутренних напряжений должны взаимно компенсироваться в каждом элементе объема тела, т.е. должно быть F i = 0 . Таким образом, уравнения

равновесия деформированного тела имеют вид:

∂ σ ik = 0 .

∂x k

Если тело находится в поле силы тяжести, то должна исчезать сумма F + ρ g сил внутренних напряжений F и силы тяжести ρ g , действующей на единицу объема, ρ -

плотность тела, g – вектор ускорения свободного падения. Уравнения равновесия в этом случае имеют вид:

∂ σ ik + ρ g i = 0 .

∂x k

Энергия деформирования

Рассмотрим какое-нибудь деформированное тело и предположим, что его деформация меняется так, что вектор деформации u i изменяется на малую величину δ u i .

Определим работу, производимую при этом силами внутренних напряжений. Умножая силу (4.6) на перемещение δ u i и интегрируя по всему объему тела, получим:

∫ ∂ x k

δ RdV =

∂ σ ik

δ ui dV .

Символом δ R обозначена работа сил внутренних напряжений в единице объема тела. Интегрируя по частям, рассматривая неограниченную среду, не деформированную на бесконечности, устремляя поверхность интегрирования в бесконечность, тогда на ней σ ik = 0 , получаем:

∫ δ RdV = − ∫ σ ik δ uik dV .

Таким образом, находим:

δ R = − σ ikδ u ik .

Полученная формула определяет работу по изменению тензора деформации, которая и определяет изменение внутренней энергии тела.